p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.255C23, C4⋊C4.77D4, (C2×C8).193D4, (C2×Q8).64D4, C8⋊4Q8.9C2, C8⋊2C8.11C2, C4⋊C8.37C22, C4.Q16.8C2, C4⋊Q8.76C22, C4.110(C4○D8), (C4×C8).288C22, Q8⋊Q8.11C2, C4.10D8.9C2, C4.6Q16.8C2, (C4×Q8).52C22, C2.11(C8.D4), C4.47(C8.C22), C4.SD16.13C2, C2.23(D4.3D4), C2.15(Q8.D4), C22.216(C4⋊D4), (C2×C4).40(C4○D4), (C2×C4).1290(C2×D4), SmallGroup(128,436)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.255C23
G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=a-1b2, e2=b2, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=a-1c, ece-1=bc, ede-1=a2d >
Subgroups: 144 in 70 conjugacy classes, 32 normal (all characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C4.10D8, C4.6Q16, C8⋊2C8, C8⋊4Q8, Q8⋊Q8, C4.Q16, C4.SD16, C42.255C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8.C22, Q8.D4, C8.D4, D4.3D4, C42.255C23
Character table of C42.255C23
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | √2 | -√-2 | -√2 | 0 | 0 | √-2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | -√2 | -√-2 | √2 | 0 | 0 | √-2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | -√2 | √-2 | √2 | 0 | 0 | -√-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | √2 | √-2 | -√2 | 0 | 0 | -√-2 | complex lifted from C4○D8 |
ρ19 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ20 | 4 | -4 | 4 | -4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ21 | 4 | -4 | 4 | -4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | 0 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 0 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 20 5 24)(2 21 6 17)(3 22 7 18)(4 23 8 19)(9 41 13 45)(10 42 14 46)(11 43 15 47)(12 44 16 48)(25 56 29 52)(26 49 30 53)(27 50 31 54)(28 51 32 55)(33 122 37 126)(34 123 38 127)(35 124 39 128)(36 125 40 121)(57 74 61 78)(58 75 62 79)(59 76 63 80)(60 77 64 73)(65 104 69 100)(66 97 70 101)(67 98 71 102)(68 99 72 103)(81 118 85 114)(82 119 86 115)(83 120 87 116)(84 113 88 117)(89 106 93 110)(90 107 94 111)(91 108 95 112)(92 109 96 105)
(1 61 22 80)(2 62 23 73)(3 63 24 74)(4 64 17 75)(5 57 18 76)(6 58 19 77)(7 59 20 78)(8 60 21 79)(9 106 43 95)(10 107 44 96)(11 108 45 89)(12 109 46 90)(13 110 47 91)(14 111 48 92)(15 112 41 93)(16 105 42 94)(25 100 50 67)(26 101 51 68)(27 102 52 69)(28 103 53 70)(29 104 54 71)(30 97 55 72)(31 98 56 65)(32 99 49 66)(33 86 124 117)(34 87 125 118)(35 88 126 119)(36 81 127 120)(37 82 128 113)(38 83 121 114)(39 84 122 115)(40 85 123 116)
(1 81 5 85)(2 119 6 115)(3 87 7 83)(4 117 8 113)(9 71 13 67)(10 103 14 99)(11 69 15 65)(12 101 16 97)(17 86 21 82)(18 116 22 120)(19 84 23 88)(20 114 24 118)(25 95 29 91)(26 105 30 109)(27 93 31 89)(28 111 32 107)(33 79 37 75)(34 59 38 63)(35 77 39 73)(36 57 40 61)(41 98 45 102)(42 72 46 68)(43 104 47 100)(44 70 48 66)(49 96 53 92)(50 106 54 110)(51 94 55 90)(52 112 56 108)(58 122 62 126)(60 128 64 124)(74 125 78 121)(76 123 80 127)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 25 22 50)(2 30 23 55)(3 27 24 52)(4 32 17 49)(5 29 18 54)(6 26 19 51)(7 31 20 56)(8 28 21 53)(9 81 43 120)(10 86 44 117)(11 83 45 114)(12 88 46 119)(13 85 47 116)(14 82 48 113)(15 87 41 118)(16 84 42 115)(33 96 124 107)(34 93 125 112)(35 90 126 109)(36 95 127 106)(37 92 128 111)(38 89 121 108)(39 94 122 105)(40 91 123 110)(57 71 76 104)(58 68 77 101)(59 65 78 98)(60 70 79 103)(61 67 80 100)(62 72 73 97)(63 69 74 102)(64 66 75 99)
G:=sub<Sym(128)| (1,20,5,24)(2,21,6,17)(3,22,7,18)(4,23,8,19)(9,41,13,45)(10,42,14,46)(11,43,15,47)(12,44,16,48)(25,56,29,52)(26,49,30,53)(27,50,31,54)(28,51,32,55)(33,122,37,126)(34,123,38,127)(35,124,39,128)(36,125,40,121)(57,74,61,78)(58,75,62,79)(59,76,63,80)(60,77,64,73)(65,104,69,100)(66,97,70,101)(67,98,71,102)(68,99,72,103)(81,118,85,114)(82,119,86,115)(83,120,87,116)(84,113,88,117)(89,106,93,110)(90,107,94,111)(91,108,95,112)(92,109,96,105), (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,25,22,50)(2,30,23,55)(3,27,24,52)(4,32,17,49)(5,29,18,54)(6,26,19,51)(7,31,20,56)(8,28,21,53)(9,81,43,120)(10,86,44,117)(11,83,45,114)(12,88,46,119)(13,85,47,116)(14,82,48,113)(15,87,41,118)(16,84,42,115)(33,96,124,107)(34,93,125,112)(35,90,126,109)(36,95,127,106)(37,92,128,111)(38,89,121,108)(39,94,122,105)(40,91,123,110)(57,71,76,104)(58,68,77,101)(59,65,78,98)(60,70,79,103)(61,67,80,100)(62,72,73,97)(63,69,74,102)(64,66,75,99)>;
G:=Group( (1,20,5,24)(2,21,6,17)(3,22,7,18)(4,23,8,19)(9,41,13,45)(10,42,14,46)(11,43,15,47)(12,44,16,48)(25,56,29,52)(26,49,30,53)(27,50,31,54)(28,51,32,55)(33,122,37,126)(34,123,38,127)(35,124,39,128)(36,125,40,121)(57,74,61,78)(58,75,62,79)(59,76,63,80)(60,77,64,73)(65,104,69,100)(66,97,70,101)(67,98,71,102)(68,99,72,103)(81,118,85,114)(82,119,86,115)(83,120,87,116)(84,113,88,117)(89,106,93,110)(90,107,94,111)(91,108,95,112)(92,109,96,105), (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,25,22,50)(2,30,23,55)(3,27,24,52)(4,32,17,49)(5,29,18,54)(6,26,19,51)(7,31,20,56)(8,28,21,53)(9,81,43,120)(10,86,44,117)(11,83,45,114)(12,88,46,119)(13,85,47,116)(14,82,48,113)(15,87,41,118)(16,84,42,115)(33,96,124,107)(34,93,125,112)(35,90,126,109)(36,95,127,106)(37,92,128,111)(38,89,121,108)(39,94,122,105)(40,91,123,110)(57,71,76,104)(58,68,77,101)(59,65,78,98)(60,70,79,103)(61,67,80,100)(62,72,73,97)(63,69,74,102)(64,66,75,99) );
G=PermutationGroup([[(1,20,5,24),(2,21,6,17),(3,22,7,18),(4,23,8,19),(9,41,13,45),(10,42,14,46),(11,43,15,47),(12,44,16,48),(25,56,29,52),(26,49,30,53),(27,50,31,54),(28,51,32,55),(33,122,37,126),(34,123,38,127),(35,124,39,128),(36,125,40,121),(57,74,61,78),(58,75,62,79),(59,76,63,80),(60,77,64,73),(65,104,69,100),(66,97,70,101),(67,98,71,102),(68,99,72,103),(81,118,85,114),(82,119,86,115),(83,120,87,116),(84,113,88,117),(89,106,93,110),(90,107,94,111),(91,108,95,112),(92,109,96,105)], [(1,61,22,80),(2,62,23,73),(3,63,24,74),(4,64,17,75),(5,57,18,76),(6,58,19,77),(7,59,20,78),(8,60,21,79),(9,106,43,95),(10,107,44,96),(11,108,45,89),(12,109,46,90),(13,110,47,91),(14,111,48,92),(15,112,41,93),(16,105,42,94),(25,100,50,67),(26,101,51,68),(27,102,52,69),(28,103,53,70),(29,104,54,71),(30,97,55,72),(31,98,56,65),(32,99,49,66),(33,86,124,117),(34,87,125,118),(35,88,126,119),(36,81,127,120),(37,82,128,113),(38,83,121,114),(39,84,122,115),(40,85,123,116)], [(1,81,5,85),(2,119,6,115),(3,87,7,83),(4,117,8,113),(9,71,13,67),(10,103,14,99),(11,69,15,65),(12,101,16,97),(17,86,21,82),(18,116,22,120),(19,84,23,88),(20,114,24,118),(25,95,29,91),(26,105,30,109),(27,93,31,89),(28,111,32,107),(33,79,37,75),(34,59,38,63),(35,77,39,73),(36,57,40,61),(41,98,45,102),(42,72,46,68),(43,104,47,100),(44,70,48,66),(49,96,53,92),(50,106,54,110),(51,94,55,90),(52,112,56,108),(58,122,62,126),(60,128,64,124),(74,125,78,121),(76,123,80,127)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,25,22,50),(2,30,23,55),(3,27,24,52),(4,32,17,49),(5,29,18,54),(6,26,19,51),(7,31,20,56),(8,28,21,53),(9,81,43,120),(10,86,44,117),(11,83,45,114),(12,88,46,119),(13,85,47,116),(14,82,48,113),(15,87,41,118),(16,84,42,115),(33,96,124,107),(34,93,125,112),(35,90,126,109),(36,95,127,106),(37,92,128,111),(38,89,121,108),(39,94,122,105),(40,91,123,110),(57,71,76,104),(58,68,77,101),(59,65,78,98),(60,70,79,103),(61,67,80,100),(62,72,73,97),(63,69,74,102),(64,66,75,99)]])
Matrix representation of C42.255C23 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 1 |
0 | 0 | 1 | 16 | 16 | 0 |
1 | 15 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 13 | 13 | 13 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 10 | 12 | 10 |
0 | 0 | 7 | 11 | 11 | 16 |
0 | 0 | 7 | 10 | 0 | 10 |
0 | 0 | 0 | 11 | 1 | 16 |
0 | 7 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 16 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,15,16,16,16,0,0,0,0,0,16,0,0,0,0,1,0],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,4,0,0,0,0,0,13,0,0,13,0,0,13,0,13,0,0,0,13,13,0,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,7,7,7,0,0,0,10,11,10,11,0,0,12,11,0,1,0,0,10,16,10,16],[0,12,0,0,0,0,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,15,16,16,16,0,0,0,1,0,0] >;
C42.255C23 in GAP, Magma, Sage, TeX
C_4^2._{255}C_2^3
% in TeX
G:=Group("C4^2.255C2^3");
// GroupNames label
G:=SmallGroup(128,436);
// by ID
G=gap.SmallGroup(128,436);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,736,422,387,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=a^-1*b^2,e^2=b^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e^-1=b*c,e*d*e^-1=a^2*d>;
// generators/relations
Export